The University of Notre Dame was awarded a three-year grant for Building Coupled Storm Surge and Wave Operational Forecasting Capacity for Western Alaska. Alaska’s coast is a unique and irreplaceable natural, social and economic system. The region’s complex geography and highly energetic atmospheric and ocean circulation and wind waves combined with the extensive continental shelf and coastal floodplain leaves many western Alaskan communities vulnerable to flooding events. In addition, strong winter storms under varying ocean ice cover make this a uniquely challenging location for predicting and preventing flood-related hazards. Compounding matters, Alaskan coasts have historically received less attention than the continental U.S., and as a result suffer from a higher degree of uncertainty in terms of coastal water level, current and wind wave simulation capacity and observations. As a result, regional forecasters and the many communities they serve in this region are severely limited in their assessment of the threat from a specific storm event and have no basis to determine impact risk or evaluate safe evacuation routes and locations. These problems become even more vexing in light of changing ice coverage conditions in and around winter months when the most intense storm events occur.
A multi-scale, multi-process integrally coupled wave-surge-ice forecast modeling system will be refined and validated with a focus on transition to operations while resolving key issues that presently limit forecast reliability in western Alaska. The proposed wave, surge and ice models are all compliant with the Earth System Modeling Framework (ESMF) National Unified Operational Prediction Capacity (NUOPC) standards. All system components will be designed to ultimately fit into the NOAA ESTOFS Pacific Storm Surge Guidance System framework. The specific goal is to enable significant advancement of NOAA’s high fidelity operational surge and wave models, ADCIRC and WAVEWATCH III, within the northern Pacific Ocean, Bering, Chukchi and Arctic Seas.
The Year 1 total for this award is $425,449.